The zinc-finger transcription factor Hindsight regulates ovulation competency of Drosophila follicles
نویسندگان
چکیده
Follicle rupture, the final step in ovulation, utilizes conserved molecular mechanisms including matrix metalloproteinases (Mmps), steroid signaling, and adrenergic signaling. It is still unknown how follicles become competent for follicle rupture/ovulation. Here, we identify a zinc-finger transcription factor Hindsight (Hnt) as the first transcription factor regulating follicle's competency for ovulation in Drosophila. Hnt is not expressed in immature stage-13 follicle cells but is upregulated in mature stage-14 follicle cells, which is essential for follicle rupture/ovulation. Hnt upregulates Mmp2 expression in posterior follicle cells (essential for the breakdown of the follicle wall) and Oamb expression in all follicle cells (the receptor for receiving adrenergic signaling and inducing Mmp2 activation). Hnt's role in regulating Mmp2 and Oamb can be replaced by its human homolog Ras-responsive element-binding protein 1 (RREB-1). Our data suggest that Hnt/RREB-1 plays conserved role in regulating follicle maturation and competency for ovulation.
منابع مشابه
Hindsight modulates Delta expression during Drosophila cone cell induction.
The induction of cone cells in the Drosophila larval eye disc by the determined R1/R6 photoreceptor precursor cells requires integration of the Delta-Notch and EGF receptor signaling pathways with the activity of the Lozenge transcription factor. Here, we demonstrate that the zinc-finger transcription factor Hindsight (HNT) is required for normal cone-cell induction. R-cells in which hindsight ...
متن کاملControl of germ-band retraction in Drosophila by the zinc-finger protein HINDSIGHT.
Drosophila embryos lacking hindsight gene function have a normal body plan and undergo normal germ-band extension. However, they fail to retract their germ bands. hindsight encodes a large nuclear protein of 1920 amino acids that contains fourteen C2H2-type zinc fingers, and glutamine-rich and proline-rich domains, suggesting that it functions as a transcription factor. Initial embryonic expres...
متن کاملThe only function of Grauzone required for Drosophila oocyte meiosis is transcriptional activation of the cortex gene.
The grauzone and cortex genes are required for the completion of meiosis in Drosophila oocytes. The grauzone gene encodes a C2H2-type zinc-finger transcription factor that binds to the cortex promoter and is necessary for high-level activation of cortex transcription. Here we define the region of the cortex promoter to which Grauzone binds and show that the binding occurs through the C-terminal...
متن کاملCompletion of meiosis in Drosophila oocytes requires transcriptional control by grauzone, a new zinc finger protein.
Mutations in grauzone or cortex cause abnormal arrest in Drosophila female meiosis. We cloned grauzone and identified it as a C2H2-type zinc finger transcription factor. The grauzone transcript is present in ovaries and at later developmental stages. A Grauzone-GFP fusion protein is functional and localizes to nuclei of both nurse cells and follicle cells during oogenesis. Three lines of eviden...
متن کاملDose-sensitive autosomal modifiers identify candidate genes for tissue autonomous and tissue nonautonomous regulation by the Drosophila nuclear zinc-finger protein, hindsight.
The nuclear zinc-finger protein encoded by the hindsight (hnt) locus regulates several cellular processes in Drosophila epithelia, including the Jun N-terminal kinase (JNK) signaling pathway and actin polymerization. Defects in these molecular pathways may underlie the abnormal cellular interactions, loss of epithelial integrity, and apoptosis that occurs in hnt mutants, in turn causing failure...
متن کامل